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Abstract-The thermal stresses during pulhng and the residual stres~es after pulhng In a Cw­
chrdlskl-grown semiconducting crystal are obtained analytically by uSing an Isotropic ther­
moelastic model. It IS assumed that a fimte cylindncal crystal is wIthdrawn from a melt with
a constant pulhng rate. and the physical propertIes of crystal are independent of temperature
Moreover the problem IS considered to be a quasi-stationary one. Numencal result~ show that
the Blot number IS a pnme factor affecting the thermal and reSIdual stresses. The differences
between the models of the finIte crystal and semi-infinite crystal are descnbed. An explanation
of the expenmental results is attempted

INTRODUCTION

Single crystals of Sit GaAs. and InP are typical materials for the current semiconductor
device technology. They are usually produced by Czochralski pulling. which is one of
the mOllt standard crystal growth techniques[l]. Dislocation-free crystals are strongly
desired because the dislocation deteriorates electrical and optical qualities of the crys­
tall I]. It is known that dislocations are primarily produced by the thermal stress. There­
fore. growth conditions facilitating the reduction of the thermal stress and consequently
of dislocations are required.

Billig[2] and Tsivinsky[3] attempted to explain dislocations by the thermal stress
produced only by the radial temperature drop. Penning[4]. Avdonin et al.[5]. Brice [6]
and Jordan et al.[7] studied the thermal stress in the crystal under the plane strain
assumption by using an isotropic thermoelastic theory. The plane strain theory. which
ill guaranteed only ifthe temperature is independent of the axial distance. is not satisfied
because an axial temperature gradient arises in the crystal. Furthermore. they did not
consider that the stress components vanish at the growing interface. Therefore, their
results are not valid for the thermal stress in the growing crystal. lwaki and Kobay­
ashi[8] presented an analytical solution for the thermal and residual stresses in a semi­
infinite cylindrical crystal with a planar solid-liquid interface. It was concluded that
the Biot number was a prime factor affecting the thermal and residual stressell. How­
ever. the thermal stress at the early stage of crystal pulling process was not yet
considered.

The thermal stress is very sensitive to material geometry. The length of the crystals
of GaAs and InP is presently about twice their radius. The purpose of this paper is
to obtain the thermal stresses in a finite crystal and to compare them with those of a
semi-infinite crystal. An explanation for experimental results obtained by Jordan et
al.[71, Shimada et al.[9] and Chen and Holmes[lO] is attempted.

STATEMENT OF PROBLEM

The Czochralski-grown crystal, which has a circular cylindrical shape with a radius
a. a finite length vt and planar ends. is withdrawn with a constant pulling rate 1/. where
t is time (Fig. 1). At the cylindrical side surface and the top end of the crystal. heat is
transferred by Newton's law of cooling. and at the bottom end the temperature is at
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Fig I. Present model.

the melting pomt Till' It is assumed that thermal conductIvity I.. and thermal dlffusivlty
K are constant, and the temperature variations T in the crystal with time are slow.
Jordan et al. obtained the quasi-steady-state (QSS) solution and showed that their QSS
assumption IS satisfactory[7]. Following their assumption. we treat the problem as a
quasi-stationary one for mathematical simplicity. On the assumption that modulus of
elasticity E. POlsson's ratio v and coefficient of thermal expansion IX are constant and
a stress-free layer is formed at the bottom end as the crystal grows. the thermal stresse!>
during pulling and the residual stresses after pulling are obtained by using isotropic
thermoelastic theory.

STRESS FIELD

By cylmdrical symmetry with respect to the z-axis. the Fourier heat-conduction
equation in the dimensionless form is expressed by [8]

Ii*T* = p(aT*/atV).

where

r
p == - ;

a
Zo Z vt

tV = - = - , + L; ,= -; L = - ;
a a a

T*== T-T,,; P==~
Till - T" K

is the Peelet number, and T" is a temperature of environment. The boundary conditiom
are

T* == I

(aT*/ap) + BT* = 0

(aT*/a\ll) + BT* == 0

(\II = 0).

(p = I).

(\II = L).

(2a)

(2b)

(2c)

where B = altll.. IS the Biot number. and h IS a convective heat transfer coefficIent.
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With the u!lual techmque of !leparation of vanable!) we find the solution of eqn (I)
subjected to the boundary condition:, (2):

x

T* = L (A"e"'~ + A"e<i~')Jo(a"p),
1/=1

where aI/ i!l the 11th root of the tran:,cendental equation

and

(3)

(4)

q = q(~,,) = P/2 - ~I/' (Sa)

q = q( - ~,,), (Sb)

(~" + D)e~"L
A" = AI/(~I/) = ~ ~ J . h h' (Sc)

(an + B~) o(a,,) (D sm ~"L + ~"cos ~"L)

All = AI/( - ~II). (Sd)

where ~II = {a;' + (PI2)2}"2; D = B + P/2. and Jo(x) and Jdx) are Bessel functions
of the first kind of orders zero and one, respectively,

The displacement potential <l>~ and the Love stress function <l>i. which are intro­
duced in order to find the stresses induced by a temperature distribution T*. have to
satisfy the following equations. respectively:

and

A*A*<l>i = O.

(6)

(7)

The stress components derived from <l>ri and <l>i are shown in eqns ( It) and (12) in ref.
[8]. Here the stress components a,) are defined by the dimensionless form a~ =
O"J(I - v)/{( Tm - Ta)aE} (i, j = p, e, 1lJ).

The boundary conditions are

* * 0O'pp = O'p'" =
* * 00' If,If, = a,.1lt =

(p = I),

(1lJ = 0 and IlJ = L).

(8a)

(8b)

Sub!ltituting eqn (3) into eqn (6), we have a particular solution

<l>~ = L {B"eqlf, + B"eiillt}Jo(a"p),
,,-I

where

B" = A,,/(q2 - a;').

B" = A,,/(q2 - a;').

The stress function <l>i is constructed in the form

and the stresses O'r'l and O'i'l are derived from <l>r and <l>~. respectively.

(9)

(lOa)

(lOb)

(II)
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A <,olution of cl> i becomes

cl>1' = ~ {ClleqtlJJo(qp) + DlleqtlJpJl(qp) + Cllel/tlJJo(qp) + V"e <;<11pJI (qp)}. (12)

" I

The unknown coefficIents C". e", D" and VII are determmed so as to satIsfy the bound­
ary conditions at the cylmdrical surface:

Consequently, we have

.. * 00'01'1' + 0' 11'1' =
* *O'llj'<II + 0'11'<11 = 0

(p = I),

(p = I).

( 13a)

(l3b)

where

CII = Bllnq},

DII = B"A(q).

ell = B"nq),

DII = B"A(q),

aIlJ1(all ) {2(\ - v)Jl(q) - q'1.J1(q) +
n ) = 2(1 - v)qJo(q)} - q'1.Jo(a,,) {2(1 - v)JI(q) + qJo(q)}

q {2(1 - v) - q'1.}Ji(q) - q'1.J5(q)

A( ) = aIlJ1(all)Jo(q) - qJo(all)J.(q)
q {2(1 - v) - q'1.}JT(q) - q'1.J6(q) .

(I4a)

(14b)

(\4c)

(I4d)

( ISa)

(lSb)

To satisfy the boundary condition (8b). the stress function <pi IS taken in the fol­
lowing form:

(16)

The stresses which are derived from cl>i must satisfy the boundary condItions at the
cylindrical surface:

(p = I). (17)

Then we have

Q{Vo(A) - JI(A)} + R{(2v - l)Jo(A) + VI(A)} =0, (I8a)

Q{ -VI(A)} + R{2(1 - V)JI(A) + VoCAl} = O. (l8b)

For the solution of eqn (18) to be nontrivial the determinant must be zero. Hence. A
IS the root of the transcendental equation

(\9)

This equation has an infinite number of complex roots. If the nth root IS defined by XII
whose real and imaginary parts are positive. - A", conj(A II ) and conj( - A,,) are also the
roots of eqn (19). We take All and - All as roots and truncate an infinite number of roots
at n = N. Consequently, the function 4>~ is written in the form

N

4>; = ~ {E"e~n'" - :f"e -An"'} {Q(Att)JO(A"p) + R(A,,)pJl(XIIP)}, (20)
1l~1



where

StrcM,c!> of Clochral~kl·groy,n ~emlconducllng m.Jlcll.J1

Q(A,,) = 2(1 - V)Jl(A,,) + ""JnC",,).

R(A,,) = A,,J.(A,,).
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(21a)

(2Ib)

and E" and E" arc unknown complex coefficients.
The unknown complex coefficients are determined by the least squares method.

so that the boundary condition (8b) may be satisfied at a number of midpoints (p",. m
= I. 2•...• M) across the top and bottom surfaces, this number being larger than
N. Thus we obtain the simultaneous equations

Re[Xm .,,]

Re[e~"LXm .,,]

Re[Ym.,,]
Re[e~"L Ym .,,]

where

Re[Xm .,,]

Re[e-lI."LX ]m."
-Re[Ym .,,]

- Re[e -~"L Y: ]m."
Re[E,,]
Im[E,,]

x RetE,,] =
ImfE,,]

(22)

x",." = - Q(AiI)A~Jo(A"p",) + R(A,,) {2(2 - V)A~Jo(A"p",) - A!,p",J.(A"p",)}, (23a)

Y",.II = Q(A,,)A~J.(AnPm) - R(A,,) {2(1 - V)A~J.(AnPm) + A~PmJO(AnP",)}' (23b)

THERMAL AND RESIDUAL STRESSES

When the crystal is pulled a length 4L, the temperature distribution changes from
Ti. to T:'+~L' and the stress field also changes from (CT~)L to (CT~)L+AL' The stresses
(a~)L+ll.L - (CT~)L are stored in an arbitrary layer of t = const. Consequently, the
thermal stresses (0'~)D at , = L 1 during pulling when the crystal is pulled from LIto
L are given by

* J) rL
{a(CT~)L} dL * *)(a,,) = JLI ---at = (a,,)L - (CT" L,' (24)

Equation (24) also shows that all stress components are zero at the interface, and no
tractions are at the cylindrical surface and at the top end.

Moreover. when the crystal has been pulled out by the final length L 2 and attains
very slowly to the uniform temperature T* = O. the residual stresses at t = L I are
given by

Putting L = L 2 in eqn (24) and substituting it in eqn (25). we have

(a~yt = - (CT~)LI'

(25)

(26)

With the usual technique of transformation of coordinates we find the three prin­
cipal shearing stresses which act, respectively, on the mutually perpendicular planes.

We will discuss the stresses with the absolutely maximum principal shearing
stresses, defined by IT* I = I T I (I - v)/{(Tm - T,,)aE}, of three principal shearing
stresses in the following section.
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NUMERICAL RESULTS

The dlmensionles~parameter~. I.e. the BlOt number, the Peelet number and POI~­

son's ratio, are chosen as B = J. P = 0.02 and v = 0.3 as tYPical values for large­
diameter GaAs crystals. In order to compare with a seml-Infimte crystal. we take L~

= 6. ThiS value is also used for S•. The infimte senes In eqns (3), (9) and (12) are
truncated at II = 45 so as to obtain an accuracy better than 0.5%. We cho~c M = 21
and N = 19 in eqn (22) ~o that the !>tres!>e~ (<T:'w)J) and (<T:oIY) at the end!> which mu~t

be zero may be less than 0.2% of (<T:,,)f?,/\ or (<T:u)f?,/\.

Temperature distribution!>, axial di!>tributlon!> and radial di!>tnbution~ of !>trc,!>c~,

respectively, are shown at the top l(Ia)-(5a)], middle l< Ib)-(5b)] and bottom [( Ic)­
(5c)] parts in Fig. 2. The first [( Ia)-(I c)] to fifth [(5a)-(5c)) columns In the figure show
the results of L = 1.2, 2, 4 and 6 during pulling and L 2 = 6 after pulhng. The radial
temperature gradient is always smaller than the axial one, but the former cannot be
neglected in comparison with the latter. The temperature distribution near the sohd­
liquid interface is almost independent of L. For the case of B = 0.01 (for example,
few-centimeters-diameter germanium crystals) the radial temperature gradient IS neg­
ligible with respect to the axial one.

The stress distributions in the axial direction at p = 0 and p = I are shown at the
middle in Fig. 2 because the extreme values of stress almost occur at these radial
positions. The thermal stress at p = I increases rapidly to the peak value occurring at
I\J =; 0.4 and then decreases gradually. The position from the solid-liquid interface and
the magnitude of the peak value are nearly equal [Fig. 2(/b)-Fig. 2(4b)]. It is found
that the peak stresses at p = I and I\J = 0.4 is the maximum stress which the crystal
undergoes during pulhng. The thermal stress dlstnbution from I\J = 0 to I\J = 4 when
L = 6 [Fig. 2(4b)] is almost identical with one when L = oc[8]. One ofthe most slgmficant
differences between the present model and the previous model of semi-infinite length
is the thermal stress at p = 0 [Fig. 2(1 b) and Fig. 2(2b)]. The peak thermal stress at p
= 0 occurs at the top end of the crystal for L < 2.4, and it occurs at , =; 2 for L >
2.4. The peak stress at p = 0 has a maximum when L = 1.2, which attains about 40%
of the maximum thermal stress at p = I. If B = 0.1 and B = 0.0 J. It attains 63% and
66%, respectively. This result cannot be obtained from the model of semi·infinite length.
This stress may lead to the formation of dislocations observed at the core of the crystal.
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The radIal dIstributions of':the stress are iUustrated at the bottom of FIg. 2. The
~harp break~ in the curVCl> for q, = 1.2 In Fig. 2( Ic) and q, == 2 to Fig. 2(2c) are due to
the change of the ~Iide plane in which IT* I occurs. A considerably higher thermal
stress occurs at the periphery near the solid-liquid interface. Near the top end the
stress at the core is greater than that at the periphery except for the middle stage of
pulling [Fig. 2(3c)]. We can read the residual stresses for the case of L'1. < 6 from Fig.
2(5b). Then, the origin of the abscbsa is moved to q, = 6 - L2' as shown under the
figure; the lower abscissa shows the case of L2 = 2 as an example. As described in
ref. IS], we can estimate qualitatively the dislocated regions from the elastic stress
distributions. Because dislocations are produced by shearing stress, it can be expected
that a high dislocation density region is present near the periphery and that a low
dislocation density region is between the core and the periphery in the crystal. ThIs
estimation agrees with the experimental results obtained by Jordan et 01.[7], Shimada
et al.[9] and Chen and Holmes[ 10].

FIgure 3 shows the dependence of the maximum thermal stress and residual stress
on the Biot number. The plotted points represent the crystal of a finite length L2 =
10 (pre~ent model). The curves represent the crystal of a semi-infinite length and are
quoted from ref. [8]. Here, the numerical errors of ref. [8] are corrected. It is found
that the thermal and residual stresses are strongly affected by the Biot number. As the
Biot number decreases, the temperature gradient of the crystal reduces. and the stresses
also decrease. Shimada et 01.[9] succeeded in growing crystals with a low and homoge­
neous dislocation density by the reduction of the temperature gradient. This experi­
mental result can be explained by Fig. 3. The highest thermal stress occurs at p = I
for both models. Therefore, a part of the conclusion in ref. [8] that the maximum stress
occurs at the center of the crystal for large values of the Biot number should be cor­
rected. The maximum thermal stress at p = 0 which is produced at the early stage of
the pulhng (L < 2) is always greater than the residual stresses after pulling. For small
values of the Biot number, higher stresses are obtained for a finite crystal than for an
infinite crystal. This means that the high thermal stress is produced during the early
stage of the pulling. On the contrary, for large values of the Biot number, a high stress

100.10.01
10- 5l.."A......._"""-__.......__.......__-'

0.001

P=0.02
TS:THERMAl STRESS
RS:RESIDUAl STRESS

() TS(p=l)
c> RS(p=l)
• TS(p=O)
o RS(p=O)

8
Fig. 3. MaXimum thermal ~tress and reSidual stress vs Blot number.
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IS produced near the solid-liquid Interrace and IS Independent of the crystal length If
the QSS as!!lumption IS satisfied.

CONCLUSIONS

I. The thermal stress during pulling and the residual stress after pullIng are affected
strongly by the Biot number.

2. The highest thermal stress is produced at the periphery in the crystal.
3. When P = 0.02. the thermal stress near the solid-liquid Interrace IS almost

Independent of the crystal length for the large Biot number. and It depends on the
crystal length for the small Biot number.
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